

Acetal (POM-C & POM-H)

ENGINEERING PLASTIC

Page: 1 of 2

Typical Applications

- Mechanical engineering
- Automotive, textile and foodstuff industries
- Gears, meter components, valve discs
- Electronics and electrical components
- Medical instrument components
- Pump components, relay and transformer housings

Key Benefits

- Wide range of grades available
- Good chemical resistance, high impact load resistance
- High mechanical strength and stiffness
- Excellent machinability
- Superior dimensional stability
- High surface hardness with good sliding properties

Customer Benefits

- Very good all-round engineering product
- Good wear life in bearing & gear applications
- Consistency of product
- Excellent stability when dimensional accuracy is important

Chemical Resistance

Chemical resistance is similar when compared to Nylon 66 though slightly more prone to attack. ACETAL offers good resistance to common solvents, esters, lubricants, ketones and aqueous solutions of acids and alkalis. The material is not resistant to formic acid, concentrated mineral acids, phenols, cresols and alkalis or strong oxidising agents such as halogens.

Product Overview

Known as polyoxymethylene, **ACETAL** is a general purpose high-quality engineering plastic which is available in a wide range of grades and forms.

Technical Description

Our range of extruded ACETAL includes the following grades and options:

GRADE MODIFICATION/PURPOSE

Acetal (POM- C) Colours, natural black, blue, others on

application. For component indentification.

Acetal +25% Glass Reinforced with 25% glass fibre for (POM-C GF 25) increased strength and stiffness.

Acetal Additives to provide electrical conductivity
(ESD60 & ESD90) or electro-static dissipation. To prevent
uncontrolled discharge in sensitive electron

uncontrolled discharge in sensitive electronic environments or in explosive atmospheres.

Acetal Special production and testing, colour coded for component identification. Certified bio-compatibility to USP Class VI and cytotoxicity to DIN EN ISO 10993-5.

Acetal - GLD160 Tribological modification for improved bearing and wear properties.

Acetal (POM-H) Colours natural and black, for component Homo-Polymer Tribological modification for improved indentification.

*Product Availability

EXTRUDED ROUND BAR

Natural colour made up to 600mm dia, black to 350mm. Modified grades – please call for a quotation.

EXTRUDED SHEET/PLATE

Natural and black colours made to 250mm thick and in various area formats. Modified grades – please call for a quotation.

TUBULAR BAR

Natural up to 350mm o/d.

STRIP

Natural from 0.30mm thick

* Sizes not stocked are available on relatively short delivery times. 1, 2 or 3 m lengths supplied or cut to customer requirements.

Acetal (POM-C & POM-H)

ENGINEERING PLASTIC

Page: 2 of 2

Mechanical Properties	Natural or Black Unmodifed	Acetal-C +25% Glass	Acetal-C +PTFE	Acetal-C ESD60 Conductive	Acetal-C ESD90 Dissipative	
Density at 20°C Tensile strength @ yield Elongation @ break Tensile modulus of elasticity Notched impact strength (Charpy)	1.41	1.58	1.52	1.40	1.34	g/cm³
	67	65	50	40	42	MPa
	30	3.0	16	30	20	%
	2800	4500	2500	1900	1800	MPa
	6	4	4	5	5	kJ/m²
Ball indentation hardness	150	195	120	100	90	N/mm²
Hardness (Shore D)	81	85	80	-	76	Scale D

Electrical Properties

1 0 13			10 ³	10 ⁹ - 10 ¹²	Ohm cm
10 ¹³			10 ³	10° - 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	Ohm
3.8		3.7			
0.002		0.002			
40		33			Kv/mm
600		600			
	3.8 0.002 40	10 ¹³ - 3.8 - 0.002 - 40 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Thermal Properties

Melting Temperature		165	165	165	165	165	°C
Heat deflection temperature method A, 1.8 MPa	е		110	160	98	89	°C
Coefficient of thermal expar (avg between 20 - 60°C)	nsion	110	30	120	130	170	10 ⁻⁶ .K ⁻¹
Specific thermal capacity at	100°C	1.50					kJ/(kg - K)
Thermal conductivity at 20°	C	0.31			0.31		W/(m-K)
Service Temperature	- long term	50 to +100	-20 to +100	-50 to +100	-20 to +100	-50 to +85	
	- short term	+140	+140	+140	+140	+140	

Chemical Resistance	Key: + = Yes	0 = Lim	0 = Limited		
Acid resistance	+	+/0	+/0	+	
Alkali resistance	+	+	+	+	
Hyrocarbon resistance	+	+	+	+	
Chlorinated hydrocarbon resistance	0	0	0	0	
Aromatic resistance	+	+ /	+	+	
Ketone resistance	+	+	+	+	
Resistance to hot water	+	+	+	+	

Thames Stockholders

Unit 5W. Woodall Road, Redburn Industrial Estate Ponders End, Enfield, Middlesex EN3 4LQ

Tel: +44 (0)20 8805 3282

sales@thamesstock.com

www.thamesstock.com